If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3v2 = -10v + 3 Reorder the terms: 3v2 = 3 + -10v Solving 3v2 = 3 + -10v Solving for variable 'v'. Reorder the terms: -3 + 10v + 3v2 = 3 + -10v + -3 + 10v Reorder the terms: -3 + 10v + 3v2 = 3 + -3 + -10v + 10v Combine like terms: 3 + -3 = 0 -3 + 10v + 3v2 = 0 + -10v + 10v -3 + 10v + 3v2 = -10v + 10v Combine like terms: -10v + 10v = 0 -3 + 10v + 3v2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 3.333333333v + v2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 3.333333333v + 1 + v2 = 0 + 1 Reorder the terms: -1 + 1 + 3.333333333v + v2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 3.333333333v + v2 = 0 + 1 3.333333333v + v2 = 0 + 1 Combine like terms: 0 + 1 = 1 3.333333333v + v2 = 1 The v term is 3.333333333v. Take half its coefficient (1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. 3.333333333v + 2.777777779 + v2 = 1 + 2.777777779 Reorder the terms: 2.777777779 + 3.333333333v + v2 = 1 + 2.777777779 Combine like terms: 1 + 2.777777779 = 3.777777779 2.777777779 + 3.333333333v + v2 = 3.777777779 Factor a perfect square on the left side: (v + 1.666666667)(v + 1.666666667) = 3.777777779 Calculate the square root of the right side: 1.943650632 Break this problem into two subproblems by setting (v + 1.666666667) equal to 1.943650632 and -1.943650632.Subproblem 1
v + 1.666666667 = 1.943650632 Simplifying v + 1.666666667 = 1.943650632 Reorder the terms: 1.666666667 + v = 1.943650632 Solving 1.666666667 + v = 1.943650632 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + v = 1.943650632 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + v = 1.943650632 + -1.666666667 v = 1.943650632 + -1.666666667 Combine like terms: 1.943650632 + -1.666666667 = 0.276983965 v = 0.276983965 Simplifying v = 0.276983965Subproblem 2
v + 1.666666667 = -1.943650632 Simplifying v + 1.666666667 = -1.943650632 Reorder the terms: 1.666666667 + v = -1.943650632 Solving 1.666666667 + v = -1.943650632 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.666666667' to each side of the equation. 1.666666667 + -1.666666667 + v = -1.943650632 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + v = -1.943650632 + -1.666666667 v = -1.943650632 + -1.666666667 Combine like terms: -1.943650632 + -1.666666667 = -3.610317299 v = -3.610317299 Simplifying v = -3.610317299Solution
The solution to the problem is based on the solutions from the subproblems. v = {0.276983965, -3.610317299}
| 8q+1=4(3+2q) | | -x+4=2x-1 | | 2x(x+1)-3=0 | | 5x+12x+20=-3 | | 2n-10=30 | | log[2](4x-1)=log[3](9) | | 2X+-8Y=7 | | +=-3 | | 4(3x+2)=15x-4 | | 6x-y=74 | | ln(4x-x^2)=0 | | 3+2(x+1)=17 | | 4=5w-w | | 2(4x+3)+6=36 | | x^2+kx^2+9=0 | | 39-x=12 | | -12-7x=5x-12 | | 5x-15=6x+6 | | 14n+34=-2+5n | | 15=2y-5y | | 2y+10=22y | | m*m*m*3=41 | | h(x)=8Ln(x+3) | | k^2+x^2+10=0 | | 3x+5x=-16+-16+20x-12 | | -3-2y=13 | | z^8+4iz^4+5=0 | | -4(4x-8)=-17 | | 2r+15=5+4r | | 2.6x+17=9 | | 4x=2.44 | | n+11=6n+6 |